Search results for "Nonsmooth function"

showing 3 items of 3 documents

An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities

2005

AbstractA multiplicity result for an eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities is obtained. The proof is based on a three critical points theorem for nondifferentiable functionals.

Dirichlet problemDiscontinuous nonlinearitiesApplied MathematicsMathematical analysisp-LaplacianMultiple solutionsMathematics::Optimization and ControlDirichlet's energyMathematics::Spectral TheoryEigenvalue Dirichlet problemCritical points of nonsmooth functionsNonlinear systemsymbols.namesakeDirichlet eigenvalueDirichlet's principleRayleigh–Faber–Krahn inequalitysymbolsp-LaplacianEigenvalues and eigenvectorsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Critical points for nondifferentiable functions in presence of splitting

2006

A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

Mathematics::Functional AnalysisPure mathematicsnon-smooth functionNonsmooth functionssplittingApplied MathematicsMathematical analysisMultiple solutionsMultiple solutionMathematics::Analysis of PDEsRegular polygoncritical point; non-smooth function; splittingcritical pointMultiplicity (mathematics)Critical pointsNonsmooth functionElliptic variational-hemivariational eigenvalue problemLipschitz continuityCritical point (mathematics)Elliptic variational–hemivariational eigenvalue problemsSplittingsEigenvalues and eigenvectorsAnalysisMathematics
researchProduct

Some remarks on nonsmooth critical point theory

2006

A general min-max principle established by Ghoussoub is extended to the case of functionals f which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, when f satisfies a compactness condition weaker than the Palais-Smale one, i.e., the so-called Cerami condition. Moreover, an application to a class of elliptic variational-hemivariational inequalities in the resonant case is presented. © Springer Science+Business Media B.V. 2007.

Pure mathematicsProblem at risonanceControl and OptimizationApplied MathematicsMathematical analysisRegular polygonNonsmooth Cerami conditionManagement Science and Operations ResearchLipschitz continuityNonsmooth Cerami; Elliptic variational–hemivariational inequalities; Problem at risonanceNonsmooth CeramiCritical point (mathematics)Computer Science ApplicationsElliptic variational-hemivariational inequalitieCompact spaceElliptic variational–hemivariational inequalitiesCritical points for nonsmooth functionMathematics
researchProduct